Transis: A Communication Sub-System
for

High Availability

Yair Amir, Danny Dolev, Shlomo Kramer, Dalia Malki

Computer Science department
The Hebrew University of Jerusalem

Jerusalem, Israel

Technical Report CS91-13

April 30, 1992

www.manharaa.com

Abstract

This paper describes Transis, a communication sub-system for high availability. Transis is
a transport layer package that supports a variety of reliable multicast message passing services
between processors. It provides highly tuned multicast and control services for scalable systems
with arbitrary topology. The communication domain comprises of a set of processors that can
initiate multicast messages to a chosen subset. Transis delivers them reliably and maintains the
membership of connected processors automatically, in the presence of arbitrary communication
delays, of message losses and of processor failures and joins. The contribution of this paper is in
providing an aggregate definition of communication and control services over broadcast domains.
The main benefit is the efficient implementation of these services using the broadcast capability.
In addition, the membership algorithm has a novel approach in handling partitions and re-
merging; in allowing the regular flow of messages to continue; and in operating symmetrically
and spontaneously.

www.manaraa.com

1 Introduction

This paper provides an overview of Transis, a communication sub-system for high availability.
Transis is developed as part of the High Availability project at the Hebrew University of Jerusalem.
Transis supports a variety of reliable multicast message passing services between processors. The
communication domain comprises of a set of processors that can initiate multicast messages to a
chosen subset. The Transis layer is responsible for their delivery at all the designated destinations.
The environment is dynamic and processors can come up and may crash, may partition and re-
merge. Transis maintains the membership of connected processors automatically. This maintenance
of correct membership is a fundamental service for constructing fault tolerant applications that use
the Transis communication services.

Transis is based on a novel communication model that is general and utilizes the characteris-
tics of available hardware. The underlying model consists of a set of processors that are clustered
into broadcast domains, typically a broadcast domain will correspond to a LAN. The communi-
cation facility within a broadcast domain is a nonreliable broadcast. The broadcast domains are
interconnected by point-to-point (non-reliable) links to form the communication domain.

Transis provides the communication and membership services in the presence of arbitrary com-
munication delays, of message losses and of processor failures and joins. However, faults do
not alter the message contents. Furthermore, messages are uniquely identified through a pair
< sender, counter >. This requires that processors that come up are able to avoid repeating pre-
vious message identifiers. As Melliar Smith et al. noted ([17]), this may be implemented by using
an incarnation number as part of the message identifier; The last incarnation number is saved on
a nonvolatile storage.

One of the leading projects in this area is the ISIS system [5]. ISIS provides services for
constructing distributed applications in a heterogeneous network of Unix machines. The services
are provided for enhancing both performance and availability of applications in a distributed en-
vironment. ISIS provides reliable communication for process-groups and various group control
operations. It supports a programming style called wvirtual synchrony for replicated services: The
events in the system are delivered to all the components in a consistent order, allowing them to
undergo the same changes as if the events are synchronous ([8, 7]). Another system providing high
availability services is described in [13, 15]. They show how to replicate a service efficiently using
a ‘lazy’ asynchronous form of updating. However, the information required for the ordering of
updates is carried by the user requests. Our service definitions are greatly influenced by the ISIS
experience and the virtual synchrony concept.

Transis offers the following set of services:

1. Atomic multicast: guarantees delivery of the message at all the active sites. This service
delivers the message immediately to the upper level.

2. Causal multicast: guarantees that if the sending of m’ causally follows the delivery of m
(defined precisely below), then each processor delivers m before delivering m’.

3. Agreed multicast: delivers messages in the same order at all sites. There are various protocols
for achieving the agreed order, some not involving additional messages ([16, 19]), others

www.manaraa.com

involving a central coordinator ([9, 6]). We are investigating this problem and propose insights
into it in ([2]).

4. Safe multicast: delivers a message after all the active processors have acknowledged its
reception.

5. Membership: maintains the membership at each processor in such a way that all connected
processors agree on the series of configuration changes and deliver the same set of messages
before installing each configuration change.

The user can use any type of multicast service for each message. These services resemble the
ISIS approach, however the design and implementation differ. The main benefit of the Transis
approach is that it operates over nonreliable communication channels and makes an efficient use
of the network broadcast capability. A full description of all of the Transis’ services is beyond
the scope of this paper. In this paper, we give an overview of the system structure and its basic
protocols. The interested reader is referred to [1, 2] for more details.

Melliar-Smith et al. suggest in [16, 17] a novel protocol for reliable broadcast communication
over physical LANs, the Trans protocol. Similar ideas appear in the Psync protocol ([19]). These
protocols use the hardware broadcast capability for message dissemination and a combined system
of ACKs and NACKSs to detect message losses and recover them. They work efficiently in broadcast
networks with marginal loss rates. Melliar-Smith et al. provide the Total protocol for total ordering
of messages over Trans ([16]), and show how to maintain agreed membership using this total order
([17]). The basic building block of Transis - Lansis - is motivated by these ideas and provides all
the services over a single broadcast domain. However, it differs from the upper level membership
and message-ordering services they provide.

The problem of maintaining processor-set membership in the face of processor faults and joins
is described in [10]. As noted by others ([12, 11, 16]), solving the membership problem (or the
equivalent problem of total ordering of messages) in an asynchronous environment with faults is
impossible. Transis contains a new membership algorithm that handles any form of detachment
and re-connection of processors, based on causally ordered messages. This extends the membership
algorithm of Mishra et al. ([18]). Our approach never allows blocking but rarely extracts live (but
not active) processors unjustfully. This is the price paid for maintaining the membership in con-
sensus among all the active processors and never blocking. This overcomes the main shortcoming
of the Total algorithm which may block with small probability in face of faults ([16]). The “ap-
proximate” membership enables the simple and efficient solutions of the rest of the control services,
such as the agreed-multicast. The Transis membership algorithm achieves the following properties:

e Handles partitions and merges correctly.

o Allows regular flow of messages of all the supported types while membership changes are

handled.

e Guarantees that members of the same configurations receive the same set of messages between
every pair of membership changes.

The contribution of this work is in providing an aggregate definition of communication and
control services over a broadcast domain. It demonstrates how to implement all the services effi-
ciently over LANs. It tackles the practical aspects of these protocols as well; Lansis is implemented

www.manaraa.com

and fully operative, and achieves encouraging, preliminary performance results. Another impor-
tant contribution is the membership algorithm. It has a novel approach in handling partitions and
re-merging; In allowing the regular flow of messages to continue; And in operating symmetrically
and spontaneously.

2 Rationale

Distributed systems are becoming common in most computing environments today. Figure 1(a)
shows a standard distributed environment, consisting of various LANs interconnected via gateways
and point-to-point links.

The fast evolution of distributed systems gave way to a “broadcast fright,” namely the fear of
relying on broadcast information in the system. Indeed, a scalable distributed system should never
attempt to maintain globally replicated information. Various systems use various kinds of multicast
services, which are mostly implemented via point-to-point dissemination of messages to all the
destinations. In other words, most existing systems model their communication environment as a
set of processors interconnected in an arbitrary topology by point-to-point links (see figure 1(b)).
This model has the benefit of generality, allowing most to all existing environments to be mapped
onto this model. Though general, this model fails to utilize the strongest characteristics of existing
communication hardware: all local communication is done through an exclusive broadcast media
(Ethernet, FDDI, etc.). The use of point-to-point multicast incurs an enormous overrate of messages
when the underlying communication system has broadcast capabilities. Furthermore, imposing a
logical point-to-point connection renders these systems non-scalable, since the n? interconnectivity
grows rapidly.

This leads us to believe that the only reasonable communication structure is hierarchical, one
that carefully utilizes local clusters (such as LANs) where possible. Figure 1(c) shows our system
model comprising of a collection of broadcast domains (BDs), interconnected by (logical) point-to-
point links. The BDs typically correspond to the physical LANs. However, as the figure indicates,
they can encompass multiple LANs that are connected by transparent gateways, or can also be
portions of LANs.

Note that when you think of an information system at any level, you will probably have a
picture like Figure 1(c) in mind. This suggests that the user should be able to map his application
easily onto such a model.

In supporting the broadcast domain services, we certainly do not advocate nondiscriminatory
use of broadcast for all purposes. Broadcasting bears a price in interrupts to non-interested pro-
cessors and in protocol complexity. The goal of this project is to provide services built around
broadcast services, as well as guidelines on when and how to use them.

www.manaraa.com

Libra
Broadcast .
Domain Gemini
Cs Shum Shum
Humus Shuldi Tit
Itan
\\ Humus
Sela
Sela
Titan Cs
Broadcast
Domain _
(C) (b) Shuldig

Figure 1: Communication Structure: Reality and Model

3 Transis

Transis supports reliable multicast message passing between processors. The communication do-
main comprises of a set of processors that can initiate multicast messages to a chosen subset. The
service is responsible for their delivery at all the designated destinations.

Transis is a transport layer service that supports processors that are presently connected. At
this layer, there is no knowledge or guarantee of delivery of messages to pre-defined processor sets.
Therefore, we define the current configuration set (CCS) that changes dynamically and consists of
the active processors. In order to guarantee message delivery within this set, the transport level
acts upon two types of events:

1. Configuration change: either the current configuration is augmented with new processors or
a processor is taken out of it.

2. Message delivery: messages are sent by any one of the processors in the current configuration.

Configuration-change events are delivered within the regular flow of messages. Transis guaran-
tees to deliver configuration-change events in a consistent order with messages at all sites. More for-
mally, each processor receives the same set of messages between every pair of configuration-change
events. Birman et al. describe this concept in [4, 8] as virtual synchrony: It allows distributed
applications to observe all the events in the system in a single order. In this way, it creates the
illusion of synchronous events. Caveat emptor: in case of a network partitioning, each partition
sees a different, non-intersecting set of configuration-change events and messages.

www.manaraa.com

3.1 General Architecture

The software architecture of the services provided by Transis is depicted in Figure 2. The uppermost
layer of Transis provides general multicast services for a hierarchy of Lansis domains (broadcast
domains). The user has control over the mapping of Transis onto the physical system and can use
locality and clustering knowledge in order to avoid unnecessary propagation of messages between
different domains.

Lansis is the underlying layer that provides a coherent, logical broadcast environment. All the
processes participating in the Lansis domain behave alike, whether they physically belong to the
same LAN or not. Thus, Lansis can be either implemented over a single LAN, or “simulated” over
a general WAN.

The connection between different Lansis domains into the global Transis domain is mediated via
the Xport mechanism. This mechanism provides a reliable, selective port for transferring messages
between Lansis domains.

Transis
Lansis
Lansis Lansis Xport
on on
LAN W AN

Figure 2: Transis Architecture

3.2 Services Types

Reliable multicast operations guarantee delivery at all destined sites. The underlying communica-
tion system model is completely asynchronous and assumes arbitrary communication delays and
losses. Therefore, messages arrive at different times and order to distinct processors. In order
to coordinate the delivery of messages at different sites, Transis provides various multicast atoms
enabling the user to correlate delivery event with other events. For example, one of the multicast
atoms provides causal order delivery of messages: if the event of sending a message my follows the
delivery of another message my at the sending processor, then all the destinations of both my, mq
will deliver my before ms.

In addition communication problems, there is added difficulty incurred by the crashing and
recovery of processors in the system. Transis provides a membership service and reports to the
upper level about changes in the current configuration set.

The additional multicast atoms do not incur extraneous message passing, but bear a cost in
the latency of the transport protocol. The various atoms can be ranked by the delaying they
inflict on the protocol. We define the index of synchrony as the number of processors that must

www.manaraa.com

acknowledge reception of the message before the protocol delivers the message to the upper level.
Figure 3 presents the Transis services and their indices of synchrony. Note that n is variable
that marks the size of the current configuration set; n changes when the configuration undergoes
changes. These changes occur during operation, which further complicates the implementation of
the services’ protocols. The following sections give the details of the hierarchy of services.

I ndex
Service-Type of
Synchrony
SAFE n
A GREED n/2+1
CAUSA AL 1
BASIC 1

Figure 3: Service Hierarchy of the Communication Domain

Atomic

The atomic multicast is the basic service. It guarantees delivery of the message at all the active
destined sites. This means that the sites that are active at a time-range around the message-posting
time will receive the message .

Every processor that receives an atomic message delivers it immediately to the upper level.
Thus, the index of synchrony of the atomic service is 1 (including the sending processor).

Causal

The causal multicast atom disseminates messages among all the destined processors such that causal
order of delivery is preserved. Motivated by Lamport’s definition of order of events in a distributed
system ([14]), The causal order of message delivery is defined as follows:

If m, m’ are broadcast messages sent by p and ¢ respectively, then

m—m'

if delivery,(m) — send,(m’)

Note that delivery,(m) and send,(m’) are events occurring at ¢ sequentially, and therefore the
order between them is well defined. The causal delivery order relation for messages is the transitive
closure of the above relation. If m — m’ we say that m’ follows m, or alternatively that m is
prior to m'. We say that m,m’ are concurrent if m 4 m’/, m’ £ m. The causal multicast atom
guarantees that if m — m’ as defined above, then for each processor p that receives both of them,

delivery (m) — delivery (m')

!The range of time is system configurable.

www.manaraa.com

The index of synchrony here is 1 as well 2.

Agreed

The agreed multicast delivers messages in the same order at all their overlapping sites. This order
is consistent with the causal order. The difference between the causal-multicast and the agreed-
multicast is that the agreed-multicast orders all the messages. This includes messages that are
sent concurrently, ¢.e. there is no causal relation between them. Thus, while the causal-order is a
partial order, the agreed-multicast needs to concur on a single total order of the messages. Note
that a majority decision does not achieve the agreed order, since the environment is asynchronous
and exhibits crashes. The agreed multicast is implemented via the ToTo algorithm ([2]). The index
of synchrony in ToTo is 7 + 1.

Safe

Sometimes the user is concerned that a specified message is received by all the destined processors.
The safe multicast provides this information, and delivers the message to the upper level only when
all the processors in the current configuration set have acknowledged reception of the message. The
safe service does not block despite processor crashes. The index of synchrony here is n.

Membership

Transis is designed to operate in a dynamic environment where processors can come up and may
crash, may partition and re-merge. The Transis system preserves a locality principle, guaranteeing
its services for the currently live processors. The set of currently live processors is automatically
maintained via the membership algorithm (described below in the membership section). Changes
in the membership are delivered to the upper level as special configuration-change events. The
membership algorithm determines the exact range of locality.

The membership algorithm has the following properties:

e Handles partitions and merges correctly.

o Allows regular flow of messages of all the supported types while membership changes are

handled.

e Guarantees that members of the same configurations receive the same set of messages between
every pair of membership changes.

3.3 Lansis

This section defines the architecture and protocols of Lansis in a broadcast domain. Intuitively, we
think of a broadcast domain (BD) as a logical broadcast LAN, which provides reliable and diverse
broadcast operations. Every message posted to Lansis by one of the processors is seen by all the
processors. All the internal ACKs and NACKs employed by Lansis are seen by all of them too.

?In practical implementation, we recommend that the sending processor wait for acknowledgement from at least
another processor before delivery, in order to confirm that the message is successfully posted on the network. There-
fore, in practice, the index of synchrony is 2.

www.manaraa.com

However, unlike broadcast LANs, messages in the BD do not necessarily arrive at the processors in
the same order. The order of arrival depends on the type of service used, as defined in the previous
section. The BD is a logical structure, that may be implemented over general topologies.

Lansis is an environment for disseminating broadcast messages. It is best suited for LANs, as
explained below in Lansis on LAN. However, Lansis can encompass diverse topologies. The logical
role of processors is the same in WANs, though the cost and performance are likely to suffer.

Lansis on LAN

In order to understand the need for Lansis over LAN let us examine the following example of a
replicated database: there are n identical replicas of data files, dy...d,,. The update operations are
immediately propagated to all the replicas, and the query operations are serviced locally by each
replica, giving the most up-to-date values. In most system implementations (e.g. [3]), each update
operation involves contacting with each replica via point-to-point communication and transmitting
the update message to it (in addition to ordering-messages sent by the coordinator in order to set
a total order of the update messages). If all the replicas reside on a physical broadcast LAN, this
method incurs an enormous overate of messages: the same message is posted n — 1 times over the
network, where theoretically it can be seen by all the replicas, but all but one ignore it because it
is not destined for them. Also, n — 1 ACKs need to be collected by the sender.

The reason that the network broadcast is not used as is for this service is that it is not completely
reliable, and messages get lost. We have identified three causes of message losses:

1. Hardware faults incurred by the network.
2. Failure to intercept messages from the network at high transfer rates due to interrupt misses.

3. Software-buffers overflow resulting from the protocol behavior.

While the first cause is almost marginal and is expected to become extinct when technology
improves, the last two reasons will remain and even become more acute when newer, faster networks
(such as FDDI) are used. Therefore, it is up to the software protocols to handle message losses and
control the flow of message dissemination.

The Lansis Protocol

The Lansis protocol is based on the principle that messages can be heard by all the processors.
If a message is lost by some of the processors, there are many other processors in the network
that have heard it and can retransmit it. Lansis uses a combined systems of piggybacked ACKs
and NACKs in order to deliver messages to all the processors. This principle idea of Lansis is
motivated by the Trans algorithm [16] and the Psync protocol [19]. However, it varies considerably
in its implementation considerations, in the variety of services it provides, and in the membership

control.
Every processor transmits messages with increasing serial numbers, serving as message-ids. We
mark the messages transmitted by Pa: Ay ., A, Az, ---. An ACK consists of the last

serial number of the messages delivered from a processor. ACKs are piggybacked onto broadcast
messages. A fundamental principle of the protocol is that each ACK need only be sent once. The

www.manaraa.com

messages that follow from other processors form a “chain” of ACKs, which implicitly acknowledge
former messages in the chain, as is the sequence:

Ay, Ay, aBy, By, By, b3(Cy,

Processors on the LAN might experience message losses. They can recognize it by analyzing the
received message chains. For example, in the following chain, a receiving processor can recognize
that it lost message Bs:

Ar, Ay, aBi, By, b3Cy,

The receiving processor here emits a negative-ACK on message Bs, requesting for its retrans-
mission. The delivered messages are held for backup by all the receiving processors. In this way,
retransmission requests can be honored by any one of the participants. Thus, once a message is
posted on the network, the role of carrying it to its destinations becomes the network’s respon-
sibility. Obviously, these messages are not kept by the processors forever. The ‘Implementation
Considerations’ section below explains how to keep the number of messages for retransmission
constant.

If the LAN runs without losses then it determines a single total order of the messages. Since
there are message losses, and processors receive retransmitted messages, the original total order is
lost. We cannot expect two different processors to observe the same message order. Thus, it is the
piggybacked information that determines the partial order of message passing.

In Lansis, a new message contains ACKs for all the causally deliverable (non-acked) messages.
This is an important difference between Trans and Lansis, where the ACKS in Lansis acknowledge
the deliverability of messages rather than their reception. Therefore, they reflect the user-oriented
cause and effect relation directly. In Trans, on the other hand, the partial order does not correspond
to the user order of events and is obtained by applying the OPD predicate on the acknowledgements
[16].

It is easy to see that this difference does not introduce deadlocks (a message will not be delayed
forever) nor does it render its correctness (atomicity and causality are preserved). From the practical
point of view we prefer to delay the ACKs when delivery is delayed, allowing us to control the
progress of the system. Furthermore, the delivery criteria in Lansis is significantly simplified by
this modification.

We think of the causal order as a directed acyclic graph (DAG): the nodes are the messages,
the arcs connect two messages that are directly dependent in the causal order®. The causal graph
contains all the messages sent in the system. The processors see the same DAG, although as they
progress, it may be “revealed” to them gradually in a different order.

Implementation of Services

All the Transis services are provided by Lansis. The services are provided by delivering messages
that reside in the DAG. They differ by the criteria that determine when to deliver messages from
the DAG to the upper level. These criteria operate on the DAG structure and they do not involve
external considerations such as time, delay etc.

FAn arc from A to B means that B acks A. Therefore A “gencrated” B.

www.manaraa.com

The delivery criteria are as follows:
1. Atomic: Immediate delivery.
2. Causal: When all direct dependents in the DAG have been delivered.

3. Agreed: We have developed a novel delivery criterion called ToTo that achieves best case
delay of & + 1 messages [2]. The ToTo criterion is strictly better than the ‘all-ack’ criterion
i.e. at extreme cases, it always delivers messages that have n ACKs, but typically it requires
less than n ACKs. ToTo is based on a dynamic membership, therefore it admits messages in
a bounded delay determined by the underlying membership algorithm.

4. Safe: When the paths from the message to the DAG’s leaves contain a message from each
processor. The safe criterion changes automatically when the membership changes.

The membership algorithm in Transis is described in a separate section below.

Implementation Considerations

Since Transis is a practical system, it also concerns itself with the implementation requirements
and feasibility of the protocols. The transport protocol needs to keep the retransmission buffers
finite by discarding messages that were seen by all the processors. Furthermore, it needs to regulate
the flow of messages and adapt it to the speed of the slowest processor. Waiting for NACKs is not
good enough. We observed by experimenting a naive implementation that recovery from omission
is costly and the system may fall into a cascade of omissions due to this belated response.

Lansis employs a novel method for controlling the flow of messages. This method attempts to
avoid ‘buffer-spill’ as much as possible in order to prevent message losses, and further slows down
when losses occur. Define a network sliding window as consisting of all the received messages that
are not acked by all yet. Fach processor computes this window from its local DAG. Note that this
window contains messages from all the processors, unlike synchronous protocols like TCP /IP which
preserve only sent-out messages. The sliding window determines an adaptive delay for transmission
by the window size, ranging from the minimal delay at small sizes and slowing up to infinite delay
(blocked from sending new messages) when the window exceeds a maximal size. The system does
not block indefinitely though. If the window is stuck for a certain period of time, the membership
algorithm interferes and removes faulty processors form the configuration. This releases the sliding-
window block and the flow of messages resumes.

Performance of Lansis

This section gives preliminary performance results of Lansis over a LAN. Lansis can operate cor-
rectly over a general WAN using any routing algorithm. However, the performance will be different;
Our main interest is in the operation of Lansis over LANs.

Lansis is a small package implemented on top of of UDP broadcast sockets. Should informa-
tion be disseminated to more than two parties, Lansis already performs better than TCP/IP. For
example, it achieves a throughput of 160 1K-messages per second in an Ethernet network of ten
Sun-4 workstations. This throughput is achieved in the most requiring conditions, when all the

10

www.manaraa.com

participants emit messages concurrently and receive all the messages. In comparison, the trans-
mission rate via TCP/IP in one direction between two parties in this network is about 350K/sec.
Moreover, the Lansis protocol exhibits only marginal degradation in performance as more machines
are added to the broadcast domain.

Lansis is a useful tool when used carefully. It is important to remember that it bears a cost:

e Extraneous communication when messages are carried over to non-interested destinations.
Also, completely noninterested processors on the LANs are interrupted by the broadcast
traffic.

o Increased processing time of the transport layer, concerned with maintenance of the mutual
backup data structures and the protocol flow control.

e Space overhead used for the messages backup.

4 Xport

The communication domain (CD) comprises of a hierarchy of broadcast domains and provides
the multicast message passing services throughout it. This section describes the mechanism and
protocols by which Transis extends the scope of its services outside the broadcast domains. The
mechanism is called the Xport mechanism.

In general, the Lansis protocol might be too demanding on the environment, requiring each
processor to observe all the messages and maintain mutual backup. This may be unsuitable for
very large systems. The Transis protocol defines the same set of multicast services over a broader
range of systems.

Using a hierarchy of BDs instead of one bigger BD may be advantageous in the following ways:

e The first advantage of the Transis is scalability: in a hierarchy of BDs, the messages overate
and space overhead is kept within the smaller sets of BDs and therefore can be kept reasonable.

e Secondly, the services are tailored to the system structure. For example, it might be best
to maintain each BD within a physical LAN where it benefits the most from the underlying
network. The external communication outside the LAN employs the Xport mechanism.

e The Transis protocol enables partitioning the set of communicating processors according
to other considerations. For example, our experience shows that it is difficult to balance
the Lansis protocol when a LAN contains processors of different speeds. Instead, the slow
computers may be coupled into a BD, and the fast computers constitute a separate BD. This
reduces the task of controlling flow in the system to the link between the two domains, which
is easier to handle.

o Lastly, the application structure may suggest partitioning into communication clusters which
are best served by different BDs. The application at large should not suffer from the overheads
exhibited by in a single BD, and is served best by a hierarchical communication domain.

11

www.manaraa.com

The Communication Domain

Figure 4 presents an architecture of a CD comprised of three BDs. A multicast message initiated
in a BD may be exported to one or more BDs at which it will be imported. All export/import
activities are handled by a designated member of the BD called the zport node. The xport nodes
of different BDs are connected by pairs of uni-directional point to point links, called zlinks.

BD2

Xport xlink(3,2)

BD3

xlink(2,3) xport
xlink(2,1)
xlink(1,3)
xlink(3,1)
Xport

BD1

Figure 4: The Communication Domain - a hierarchy of broadcast domains connected by the Xport
mechanism.

The CD is mappable to general communication structures in a way which efficiently utilizes
hardware characteristics and application structure. Though supplying all of the multicast services
with the same semantics as in a broadcast domain, the CD differs in performance and low level
behavior. Within a BD each processor obtains all the acknowledgment information that passes in
the system, while outside, this information is inaccessible. The performance of message dissemina-
tion within a single BD might be different than in a broader CD. The Transis protocol is also more
susceptible to faults than Lansis since it depends on gateway connections. In addition, processors
only backup other processors within their BD.

The problem of making the Xport mechanism resilient to crash and disconnection faults is
solved by replicating xport nodes and xlinks. A service can be replicated using an agreement atom.
In Xport, the agreement atom is implemented using the agreed multicast service in the set of xport
nodes. Thus, one additional multicast is needed per export or import of an event. In the following
sections we will assume reliable xlinks and xport nodes.

12

www.manaraa.com

Atomic and Causal Multicast in the CD

This section describes the inter-BD protocol that extends the atomic and causal multicast services
to the communication domain. The inter-BD causal multicast protocol is performed only by the
xport nodes, all other nodes perform only the regular intra-BD protocol and are totally oblivious
to the fact that messages cross BD boundaries.

The inter-BD causal multicast protocol entails two types of activities:

o Fxport: The xport node exports the message to all relevant BDs.

o Import: Messages received from remote BDs are disseminated locally while preserving causal
order requirements.

Fach xport node maintains a vector of counters v with one entry per xlink in the system?,
v = (v1, ..., v,) where n is the number of xlinks in the CD. When an xport node engages to export
a message on some xlinks, it increments these links’ fields in the vector. It sends the full vector
with the counters of all the xlinks in the system. Similarly, when an xport node imports a message,
it delays handling it until all prior messages on connected links are received. This is done by
comparing the vector components that correspond to all the incoming links. It updates the local
vector by taking the pairwise maximum of all the xlinks. Upon importing a message, the xport
transmits it in its local BD. This method relies on the continuity of xlink counters, and in case of
partitions, the upper level needs to update the counters.

Note that the vector contains an entry per xlink and not per BD (unlike ISIS vector time
stamps). The reason for this is that messages may be destined to any number of BDs. In this way
non-interested BDs are not concerned with messages not destined to them.

The import and export algorithms are sketched below:

o Import: Upon receiving a message m, stamped with a vector time stamp muv, through xlink
wnl, wait until for every incoming xlink [:

{ moll]=o[l]+1 [=1inl
mo[l] <= o[l] 1 #inl

When the condition holds, update v to the pairwise maximum of (v, mv), and multicast m
within the BD.

e Export: Upon delivery of a message m initiated in the local BD such that destinations(m)
contain external nodes:

1. Strip m of inner BD piggybacked information (ACKs, NACKs);

2. Let outlinks contains all the outgoing links to the external destinations of m.
For every xlink [€ outlinks, increment v[l].

3. Stamp m with v and send it on all outlinks.

It can easily be verified that this protocol extends the causal order across BDs.

*n can be reduced by applying considerations similar to those described in [8]

13

www.manaraa.com

Agreed and Safe Multicast in the CD

The intra-BD agreed multicast extends the agreed multicast in the CD. If messages mq, my initiated
at BDq, BDs respectively, are multicast to processors in BDy and BD,, then all destinations of
(mq, mg) in both BDs will deliver my and my in the same order. It should be noted that only
messages destined to more than one BD need to participate in the inter-BD protocol, all other
messages are internal to the BD from which they were initiated. The correctness of the agreed
multicast service is preserved if these messages participate only in the intra-BD protocol.

The agreed multicast service in the CD is implemented on top of the causal multicast protocol.
It is implemented by a cascade of two protocols (see Figure 5):

e An intra-BD agreed multicast protocol. Performed only in the BD from which the message
had been initiated. Once local deliverability is reached the message is further delayed until
the inter-BD protocol reaches global deliverability.” At remote BDs, an imported agreed
multicast message is delayed until global deliverability is reached.

e An inter-BD total ordering protocol. Performed only by the xport nodes. The input to the
protocol is a stream of partially ordered messages, among which the locally initiated messages
are totally ordered. The xport nodes reach an agreement on the order of all relevant messages
and broadcast it within their BDs. This agreement can be reached by any algorithm for total

ordering of messages.

Receive Imported
Message

Receive Loca
Message

(a) regular node

Local Can-Deliver
Export Needed

Xport Reports:
Global Can-Deliver

Perform
Intra-BD
Protocol

Local Can-Deliver
Export Not Needed

Receive Imported
Message

Receive Loca
Message

(b) xport node

Local Can-Deliver
Perform Export Needed Global Can-Deliver

Perform
Intra-BD Inter-BD
Protocol Protocol
Local Can-Deliver
Export Not Needed

Figure 5: Agreed multicast in the CD: a per message state diagram.

The safe multicast is easily reducible (in a similar way to the agreed multicast) to a cascade of

®As noted above, for messages with a destination set contained in the local BD no further delay is needed.

14

www.manaraa.com

two protocols: an intra-BD all-ack protocol and an inter-BD all-ack protocol in which the relevant
xport nodes exchange local deliverability information.

Cost

The concept of a single port through which all messages are imported and exported is natural in
many physical topologies. It is often the case that a LAN is connected to other LANs or WANSs via
a single bridging node. Thus, the Xport mechanism does not introduce any additional communi-
cation bottlenecks. Since BDs are typically large and connected by relatively slow links, we expect
the communication bandwidth between BDs to be significantly smaller than the communication
bandwidth inside a BD. Thus, the relatively simple protocols employed by the Xport mechanism
are not expected to be a serious processing burden on the xport nodes.

15

www.manaraa.com

5 Membership

Every processor holds a private view of the current configuration that contains all the processors it
has established connections with. We call this view C'CS, the Current Configuration Set. Note that
this is not a user-defined processor-set, but represents the up-to-date knowledge of active processors
in the system. All the processors in the current configuration set must agree on its membership.
When a processor comes up, it forms a singleton CCS. This initial set is trivially in agreement
by all its members. The CCS undergoes changes during operation: processors dynamically go
up and down, and the CCS reflects these changes through a series of configuration changes. The
membership problem is to maintain the CCS in agreement by all its members throughout these
changes.

This problem is provably impossible to solve in asynchronous environments with faults([12, 11]).
Our membership algorithm circumvents these results by allowing the extraction of live (but not
active) processors unjustfully. Consequently, the membership algorithm never allows blocking, and
operates within the regular flow of messages. The sections bellow give the essentials of the algorithm
and an intuitive claim of its correctness. A full description of the membership algorithm and its
proof is provided in [1].

5.1 The Faults Handling Algorithm

This section focuses on a membership algorithm for handling departure of processors from the set
of active ones.

Throughout this section, we assume the existence of a starting ‘current” membership, Members,
which is the agreed set of connected members. Members is the lower level’s representation of the
membership set. Initially, C'C'S in the upper level contains the same set as Members. During the
faults protocol, the Members set undergoes changes which might render it temporarily different
from C'C'S. Eventually, these changes are propagated to the upper level and the C'C'S becomes
up-to-date with Members.

The fault handling algorithm operates within the regular flow of messages. When processors in
the current set fail, the DAG gets filled with messages that require ACKs from the failed processors
(such as ‘safe’ and ‘agreed’ messages). As a result, the system would block. Therefore the faults
need to be detected and considered. The object of the algorithm is to achieve consensus among all
the live processors about the failed processors.

Each processor may find out separately about failed processors. The specific method for de-
tecting faults is implementation dependent and irrelevant to the faults algorithm. For example, in
the Transis environment, each processor expects to hear from other processors in the CCS within
some regular interval. Failing this, it attempts to contact the suspected failed processor through a
special safe channel. If this fails too, it decides that this processor is faulty, and emits an I message
declaring this processor faulty.

A processor p receiving a set S P of F messages seeks for confirmation from all the remaining
processors in the membership. The S' P set is ordered by the causal order, and by the lexicographical
order among concurrent messages. The accepting set, Accept = Members — Faulties, must send
ACKs for all of SP. This is the deliverability condition for the F messages in SP. When SP
is deliverable, the faulty processors are removed from Members and the delivery criterion for the
regular messages is changed. The block is thus removed, and the next messages from the DAG are

16

www.manaraa.com

delivered to the upper level. Eventually, all the I' messages are delivered according to their order
in SP. Accordingly, the CCS goes through the configuration changes one by one, that bring it
up-to-date with Members.

This algorithm assures that the live connected processors agree on every failed processor. More-
over, all processors deliver the same last message from a failed processor, before installing the new
configuration. Note that the S'P set is dynamic, and may be different at distinct processors. How-
ever, the following two properties are preserved:

o All the connected processors deliver the same set of messages before delivering each configu-
ration change. In particular, all the configuration changes are delivered in the same order.

o All the ‘safe’ messages are delivered with the same safe-set of the processors that acked them.

The following section introduces the data structures of the algorithm and some notations. The
protocol is given in pseudo code in an event-driven fashion, describing the handling of each incoming
message.

Notation

In addition to regular messages, there are F messages in the form F(p), where F(p) suggests that
an existing processor p is faulty.

Each processor maintains a few data structures and a set of operators on them:

1. The direct acyclic graph (DAG) of the received messages that are pending to be delivered.
It is a common variable to all operations, and we omit it as an explicit parameter further on.

2. Members P - The current set of connected processors.
3. SP?={F(ql),...,F(¢k)} - The ordered set of non-delivered special (faulty) messages.

4. Accept P = Members? — {q| F(q) € SP ?}.
Below, we neglect to write the ‘P’ superscript when it is obvious from the context.

The Algorithm

The faults protocol specifies the delivery criteria for F messages, and the effect taken by delivering
them. The protocol operates on a full DAG without losses. The acking mechanism and the recovery
of missing messages are part of the Transis package.

1. When the event of communication-break with processor ¢ occurs, send F' message F'(q).

2. When receiving a message from a failed sender (i.e. F(sender) € SP) discard it, unless it is
a message that the Transis layer asked for recovery.

3. When receiving a regular message insert it to the DAG.

17

www.manaraa.com

4. When receiving F message F(¢q) set:

SP=SPU{F(q)}
Accept = Accept — {q}

Stop acking messages from gq.

5. When receiving ACK for any message in 5P, check the following delivery criterion for S FP:
All the processors in Accept acked all the messages in S P. If the criterion is met, change:

Members = Accept
SP=10.

After each event of the algorithm, it checks if the next message in the DAG is deliverable. If so,
the message is delivered to the upper level and removed from the DAG. Note: this includes both
regular messages and F messages. The upper level notes the configuration change only when the
F messages are delivered to it according to their order in the DAG. F messages are taken last in
their concurrency set.

5.2 General Description of the Join Algorithm

In this section we give a non-formal description of the join algorithm, in order to provide intuition
on it.

At a normal state, all the connected processors agree on the membership in their current
configuration. (And a recovered or a newly started processor is a single member set). The join
algorithm is trigerred when a processor detects a “foreign” message in the broadcast domain. The
current set attempts to merge with the foreign set or sets. Since it operates in a broadcast domain,
we expect this to typically happen at the other set(s) and the algorithm works symmetrically,
i.€. there is no joining-side and accepting-side. Note that actual simultaneity is not required for
correctness. The closer the sets commence, the sooner they will complete the join protocol. The
purpose of the join algorithm is to reach an agreed decision on a joined-membership. There are
three logical phases (see Figure 6):

1. Each connected set “publishes” its membership through a special attempt-join (A.J) message.

2. AJ messages are observed by foreign processors. Each processor independently suggests a
merged configuration in a JOIN message. JOIN messages are observed and acked by foreign
processors. A JOIN message that is confirmed by all of its members is accepted as the new
configuration.

3. The common DAG of messages of the new configuration is rooted at the accepted JOIN
message and contains messages that follow it.

A JOIN message that is considered for delivery divides all the messages to those that precede
it and those that follow it. Messages that are prior to it are delivered within their original con-
figurations. If the JOIN message is delivered, messages that follow it are delivered in the joined

18

www.manaraa.com

Joined

DAG
flow of
regular
messages
t JOIN d
/4\\
4N
A RN
/ | \
// | \\
/ | N

4 \
R4 Ad \
AJ \
\
\
Ad
B's
time - ‘

Figure 6: Join Procedure - 3 Logical Phases

set. Thus, the handling of special messages before and after a JOIN message is essentially the
same as the faults algorithm. It can be shown that all connected processors deliver the same JOIN
message. Naturally, if a partition occurs during the join procedure, two detached processors might
not maintain this.

A few details are worth noting: Fach set must agree on the representing state of the set, for the
AJ message. The last message that caused a configuration change is taken as the representing state
of the set. The state representation includes the membership and a complete vector time-stamp,
that holds the counter of the last delivered message from each member processor. Any member
can transmit this agreed state when trying to join other sets, provided that there are no pending
messages for configuration changes.

After sending a representative AJ message of the set, each processor in each set delays before
attempting to join other sets (during this time, regular flow of messages within the set continues).
The purpose of delaying is to allow as many other sets as possible to reach an agreement and
transmit their AJ message. When the delay completes, each processor independently transmits a
suggested JOIN message containing all the AJ/JOIN messages it received. If a JOIN message sent
by another processor already contains this suggestion, the processor avoids re-suggesting it and
simply acks it.

19

www.manaraa.com

The join algorithm must guarantee consistency of the join procedure, such that all the connected
members agree on the accepted JOIN message. Therefore, every processor commits to one JOIN
suggestion by either sending it or acking it. However, if any of the processors required to confirm
this JOIN message sends a different suggestion before acking it, a new JOIN message combining
both suggestions is sent. Note that different suggestions from foreign processors must be ignored
after committing to one JOIN message. However, if a required member of the committed JOIN
message sends a different suggestion, it is safe to move to a new JOIN message.

Combining different suggestions such as JOIN, AJ and F messages is done by taking all the
live processors in all the messages. There may be a delicate rare situation when a processor moves
from one configuration to another without the former set’s knowledge (yet). The merger recognizes
this fact through the time-stamp of this processor in two AJs in the JOIN message. It marks the
processor faulty in its former set, i.e the one with the smaller counter. When there are multiple,
concurrent identical JOIN messages they are considered as one and do not require merging.

Faults occurring during the join procedure are handled in the usual way, where I messages
following the JOIN message must be acked by the joined membership set. Faults that are reported
concurrently with a JOIN message are a special case of “different suggestions” sent by required
members. In the case of concurrent JOIN and F messages, a new JOIN message merges them. This
allows a JOIN message to be delivered even if members of its suggested membership fail during the
join procedure.

A JOIN message can be delivered when its proposed membership set acks it. There may be
faulty processors in this set, in which case the remaining processors must ack both the JOIN
message and all the I messages.

20

www.manaraa.com

6 Conclusions

Most transport-layer packages today provide point to point communication, or non-reliable mul-
ticast. We have shown how to generalize methods employed by these layers to support multicast,
and how to incorporate them gracefully into existing systems. Our preliminary implementation
over a heterogeneous network of Sun-4 and Sun-3 machines shows promising results. Over more
than three machines, performance is already better than standard point to point protocols.

Fischer, Lynch and Paterson ([12], and later Dolev, Dwork and Stockmeyer, [11]) have shown
that without some sort of synchronization no agreement is possible. OQur membership algorithm
circumvents these results by introducing a dynamic local group upon which agreement is based.
It is true that in some extreme cases, processors may wrongly decide that another processor has
failed, but when this is found out, the system recovers. By maintaining membership at the lowest
level, we simplify the implementation of all the other services. For example, in [2] we show how to
construct the agreed multicast on top of the dynamic membership.

The membership algorithm operates symmetrically and spontaneously. Its novel aspect is the
ability to join partitions. To the best of our knowledge all of the existing membership algorithms
(e.g. [17, 18, 10, 8]) handle the joining of single processors only. This feature is crucial since
partitions do occur. For example, when the network includes bridging elements partitions are
likely to occur.

21

www.manaraa.com

References

[1] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Membership algorithms in broadcast domains.
Technical Report €CS92-10, dept. of comp. sci.., the Hebrew University of Jerusalem, 1992.

[2] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Total ordering of messages in broadcast domains.
Technical Report CS92-9, dept. of comp. sci.., the Hebrew University of Jerusalem, 1992.

[3] A. Bhide and S. P. Morgan. A highly available network file server. RC 16161, IBM Research,
May 1990.

[4] K. Birman, R. Cooper, and B. Gleeson. Programming with process groups: Group and mul-
ticast semantics. TR 91-1185, dept. of Computer Science, Cornell Uni., Jan 1991.

[5] K. Birman, R. Cooper, T. A. Joseph, K. Marzullo, M. Makpangou, K. Kane, F. Schmuck, and
M. Wood. The ISIS System Manual. Dept of Computer Science, Cornell University, Sep 90.

[6] K. Birman and T. Joseph. Realiable communication in the presence of failures. ACM Trans.
Comput. Syst., 5(1):47-76, February 1987.

[7] K. Birman and T. Joseph. Exploiting virtual synchrony in distributed systems. In Ann. Symp.
Operating Systems Principles, number 11, pages 123-138. ACM, Nov 87.

[8] K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic group multicast. TR
91-1192, dept. of comp. sci., Conrell University, 91. revised version of ‘fast causal multicast’.

[9] J. M. Chang and N. Maxemchuck. Realiable broadcast protocols. ACM Trans. Comput. Syst.,
2(3):251-273, August 1984.

[10] F. Cristian. Reaching agreement on processor group membership in synchronous distributed
systems. Research Report RJ 5964, IBM Almaden Research Center, Mar. 1988.

[11] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchrony needed for distributed
consensus. J. ACM, 34(1):77-97, Jan. 1987.

[12] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with
one faulty processor. J. ACM, 32(2):374-382, 1985.

[13] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Lazy replication: Exploiting the semantics
of distributed services. In Ann. Symp. Principles of Distributed Computing, number 9, pages
43-58, August 90.

[14] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Comm. ACM,
21(7):558-565, July 78.

[15] B. Liskov and R. Ladin. Highly-available distributed services and fault-tolerant distributed
garbage collection. In Ann. Symp. Principles of Distributed Computing, number 5, August 86.

[16] P. M. Melliar-Smith, L. E. Moser, and V. Agrawala. Broadcast protocols for distributed
systems. IEEE Trans. Parallel & Distributed Syst., (1), Jan 1990.

22

www.manaraa.com

[17] P. M. Melliar-Smith, L. E. Moser, and V. Agrawala. Membership algorithms for asynchronous
distributed systems. In Intl. Conf. Distributed Computing Systems, May 91.

[18] S. Mishra, L. L. Peterson, and R. D. Schlichting. A membership protocol based on partial
order. In proc. of the intl. working conf. on Dependable Computing for Critical Applications,
Feb 1991.

[19] L. L. Peterson, N. C. Buchholz, and R. D. Schlichting. Preserving and using context infor-
mation in interprocess communication. ACM Trans. Comput. Syst., 7(3):217-246, August
89.

23

www.manharaa.com

