
www.manaraa.com

Transis: A Communication Sub-SystemforHigh AvailabilityYair Amir, Danny Dolev, Shlomo Kramer, Dalia MalkiComputer Science departmentThe Hebrew University of JerusalemJerusalem, IsraelTechnical Report CS91-13April 30, 1992

www.manaraa.com

AbstractThis paper describes Transis, a communication sub-system for high availability. Transis isa transport layer package that supports a variety of reliable multicast message passing servicesbetween processors. It provides highly tuned multicast and control services for scalable systemswith arbitrary topology. The communication domain comprises of a set of processors that caninitiate multicast messages to a chosen subset. Transis delivers them reliably and maintains themembership of connected processors automatically, in the presence of arbitrary communicationdelays, of message losses and of processor failures and joins. The contribution of this paper is inproviding an aggregate de�nition of communication and control services over broadcast domains.The main bene�t is the e�cient implementation of these services using the broadcast capability.In addition, the membership algorithm has a novel approach in handling partitions and re-merging; in allowing the regular
ow of messages to continue; and in operating symmetricallyand spontaneously.

www.manaraa.com

1 IntroductionThis paper provides an overview of Transis, a communication sub-system for high availability.Transis is developed as part of the High Availability project at the Hebrew University of Jerusalem.Transis supports a variety of reliable multicast message passing services between processors. Thecommunication domain comprises of a set of processors that can initiate multicast messages to achosen subset. The Transis layer is responsible for their delivery at all the designated destinations.The environment is dynamic and processors can come up and may crash, may partition and re-merge. Transis maintains the membership of connected processors automatically. This maintenanceof correct membership is a fundamental service for constructing fault tolerant applications that usethe Transis communication services.Transis is based on a novel communication model that is general and utilizes the characteris-tics of available hardware. The underlying model consists of a set of processors that are clusteredinto broadcast domains, typically a broadcast domain will correspond to a LAN. The communi-cation facility within a broadcast domain is a nonreliable broadcast. The broadcast domains areinterconnected by point-to-point (non-reliable) links to form the communication domain.Transis provides the communication and membership services in the presence of arbitrary com-munication delays, of message losses and of processor failures and joins. However, faults donot alter the message contents. Furthermore, messages are uniquely identi�ed through a pair< sender; counter >. This requires that processors that come up are able to avoid repeating pre-vious message identi�ers. As Melliar Smith et al. noted ([17]), this may be implemented by usingan incarnation number as part of the message identi�er; The last incarnation number is saved ona nonvolatile storage.One of the leading projects in this area is the ISIS system [5]. ISIS provides services forconstructing distributed applications in a heterogeneous network of Unix machines. The servicesare provided for enhancing both performance and availability of applications in a distributed en-vironment. ISIS provides reliable communication for process-groups and various group controloperations. It supports a programming style called virtual synchrony for replicated services: Theevents in the system are delivered to all the components in a consistent order, allowing them toundergo the same changes as if the events are synchronous ([8, 7]). Another system providing highavailability services is described in [13, 15]. They show how to replicate a service e�ciently usinga `lazy' asynchronous form of updating. However, the information required for the ordering ofupdates is carried by the user requests. Our service de�nitions are greatly in
uenced by the ISISexperience and the virtual synchrony concept.Transis o�ers the following set of services:1. Atomic multicast: guarantees delivery of the message at all the active sites. This servicedelivers the message immediately to the upper level.2. Causal multicast: guarantees that if the sending of m0 causally follows the delivery of m(de�ned precisely below), then each processor delivers m before delivering m0.3. Agreedmulticast: delivers messages in the same order at all sites. There are various protocolsfor achieving the agreed order, some not involving additional messages ([16, 19]), others1

www.manaraa.com

involving a central coordinator ([9, 6]). We are investigating this problem and propose insightsinto it in ([2]).4. Safe multicast: delivers a message after all the active processors have acknowledged itsreception.5. Membership: maintains the membership at each processor in such a way that all connectedprocessors agree on the series of con�guration changes and deliver the same set of messagesbefore installing each con�guration change.The user can use any type of multicast service for each message. These services resemble theISIS approach, however the design and implementation di�er. The main bene�t of the Transisapproach is that it operates over nonreliable communication channels and makes an e�cient useof the network broadcast capability. A full description of all of the Transis' services is beyondthe scope of this paper. In this paper, we give an overview of the system structure and its basicprotocols. The interested reader is referred to [1, 2] for more details.Melliar-Smith et al. suggest in [16, 17] a novel protocol for reliable broadcast communicationover physical LANs, the Trans protocol. Similar ideas appear in the Psync protocol ([19]). Theseprotocols use the hardware broadcast capability for message dissemination and a combined systemof ACKs and NACKs to detect message losses and recover them. They work e�ciently in broadcastnetworks with marginal loss rates. Melliar-Smith et al. provide the Total protocol for total orderingof messages over Trans ([16]), and show how to maintain agreed membership using this total order([17]). The basic building block of Transis - Lansis - is motivated by these ideas and provides allthe services over a single broadcast domain. However, it di�ers from the upper level membershipand message-ordering services they provide.The problem of maintaining processor-set membership in the face of processor faults and joinsis described in [10]. As noted by others ([12, 11, 16]), solving the membership problem (or theequivalent problem of total ordering of messages) in an asynchronous environment with faults isimpossible. Transis contains a new membership algorithm that handles any form of detachmentand re-connection of processors, based on causally ordered messages. This extends the membershipalgorithm of Mishra et al. ([18]). Our approach never allows blocking but rarely extracts live (butnot active) processors unjustfully. This is the price paid for maintaining the membership in con-sensus among all the active processors and never blocking. This overcomes the main shortcomingof the Total algorithm which may block with small probability in face of faults ([16]). The \ap-proximate" membership enables the simple and e�cient solutions of the rest of the control services,such as the agreed-multicast. The Transis membership algorithm achieves the following properties:� Handles partitions and merges correctly.� Allows regular
ow of messages of all the supported types while membership changes arehandled.� Guarantees that members of the same con�gurations receive the same set of messages betweenevery pair of membership changes.The contribution of this work is in providing an aggregate de�nition of communication andcontrol services over a broadcast domain. It demonstrates how to implement all the services e�-ciently over LANs. It tackles the practical aspects of these protocols as well; Lansis is implemented2

www.manaraa.com

and fully operative, and achieves encouraging, preliminary performance results. Another impor-tant contribution is the membership algorithm. It has a novel approach in handling partitions andre-merging; In allowing the regular
ow of messages to continue; And in operating symmetricallyand spontaneously.2 RationaleDistributed systems are becoming common in most computing environments today. Figure 1(a)shows a standard distributed environment, consisting of various LANs interconnected via gatewaysand point-to-point links.The fast evolution of distributed systems gave way to a \broadcast fright," namely the fear ofrelying on broadcast information in the system. Indeed, a scalable distributed system should neverattempt to maintain globally replicated information. Various systems use various kinds of multicastservices, which are mostly implemented via point-to-point dissemination of messages to all thedestinations. In other words, most existing systems model their communication environment as aset of processors interconnected in an arbitrary topology by point-to-point links (see �gure 1(b)).This model has the bene�t of generality, allowing most to all existing environments to be mappedonto this model. Though general, this model fails to utilize the strongest characteristics of existingcommunication hardware: all local communication is done through an exclusive broadcast media(Ethernet, FDDI, etc.). The use of point-to-point multicast incurs an enormous overrate of messageswhen the underlying communication system has broadcast capabilities. Furthermore, imposing alogical point-to-point connection renders these systems non-scalable, since the n2 interconnectivitygrows rapidly.This leads us to believe that the only reasonable communication structure is hierarchical, onethat carefully utilizes local clusters (such as LANs) where possible. Figure 1(c) shows our systemmodel comprising of a collection of broadcast domains (BDs), interconnected by (logical) point-to-point links. The BDs typically correspond to the physical LANs. However, as the �gure indicates,they can encompass multiple LANs that are connected by transparent gateways, or can also beportions of LANs.Note that when you think of an information system at any level, you will probably have apicture like Figure 1(c) in mind. This suggests that the user should be able to map his applicationeasily onto such a model.In supporting the broadcast domain services, we certainly do not advocate nondiscriminatoryuse of broadcast for all purposes. Broadcasting bears a price in interrupts to non-interested pro-cessors and in protocol complexity. The goal of this project is to provide services built aroundbroadcast services, as well as guidelines on when and how to use them.
3

www.manaraa.com

Shum

Titan

GeminiCs

Humus Libra

Sela

Shuldig

Sela

Titan

Gemini

Libra

Shuldig

Cs

Humus

Shum

Titan

Sela

Gemini

Libra

Shuldig

Cs

Humus

Shum

(c) (b)

(a)

L A N

L A N

L A NL A N

Broadcast
Domain

Broadcast
Domain Domain

Broadcast

Figure 1: Communication Structure: Reality and Model3 TransisTransis supports reliable multicast message passing between processors. The communication do-main comprises of a set of processors that can initiate multicast messages to a chosen subset. Theservice is responsible for their delivery at all the designated destinations.Transis is a transport layer service that supports processors that are presently connected. Atthis layer, there is no knowledge or guarantee of delivery of messages to pre-de�ned processor sets.Therefore, we de�ne the current con�guration set (CCS) that changes dynamically and consists ofthe active processors. In order to guarantee message delivery within this set, the transport levelacts upon two types of events:1. Con�guration change: either the current con�guration is augmented with new processors ora processor is taken out of it.2. Message delivery: messages are sent by any one of the processors in the current con�guration.Con�guration-change events are delivered within the regular
ow of messages. Transis guaran-tees to deliver con�guration-change events in a consistent order with messages at all sites. More for-mally, each processor receives the same set of messages between every pair of con�guration-changeevents. Birman et al. describe this concept in [4, 8] as virtual synchrony: It allows distributedapplications to observe all the events in the system in a single order. In this way, it creates theillusion of synchronous events. Caveat emptor: in case of a network partitioning, each partitionsees a di�erent, non-intersecting set of con�guration-change events and messages.4

www.manaraa.com

3.1 General ArchitectureThe software architecture of the services provided by Transis is depicted in Figure 2. The uppermostlayer of Transis provides general multicast services for a hierarchy of Lansis domains (broadcastdomains). The user has control over the mapping of Transis onto the physical system and can uselocality and clustering knowledge in order to avoid unnecessary propagation of messages betweendi�erent domains.Lansis is the underlying layer that provides a coherent, logical broadcast environment. All theprocesses participating in the Lansis domain behave alike, whether they physically belong to thesame LAN or not. Thus, Lansis can be either implemented over a single LAN, or \simulated" overa general WAN.The connection between di�erent Lansis domains into the global Transis domain is mediated viathe Xport mechanism. This mechanism provides a reliable, selective port for transferring messagesbetween Lansis domains.
L a n s i sL a n s i s

L a n s i s

T r a n s i s

X p o r t

o n

W A N

o n

L A NFigure 2: Transis Architecture3.2 Services TypesReliable multicast operations guarantee delivery at all destined sites. The underlying communica-tion system model is completely asynchronous and assumes arbitrary communication delays andlosses. Therefore, messages arrive at di�erent times and order to distinct processors. In orderto coordinate the delivery of messages at di�erent sites, Transis provides various multicast atomsenabling the user to correlate delivery event with other events. For example, one of the multicastatoms provides causal order delivery of messages: if the event of sending a message m2 follows thedelivery of another message m1 at the sending processor, then all the destinations of both m1; m2will deliver m1 before m2.In addition communication problems, there is added di�culty incurred by the crashing andrecovery of processors in the system. Transis provides a membership service and reports to theupper level about changes in the current con�guration set.The additional multicast atoms do not incur extraneous message passing, but bear a cost inthe latency of the transport protocol. The various atoms can be ranked by the delaying theyin
ict on the protocol. We de�ne the index of synchrony as the number of processors that must5

www.manaraa.com

acknowledge reception of the message before the protocol delivers the message to the upper level.Figure 3 presents the Transis services and their indices of synchrony. Note that n is variablethat marks the size of the current con�guration set; n changes when the con�guration undergoeschanges. These changes occur during operation, which further complicates the implementation ofthe services' protocols. The following sections give the details of the hierarchy of services.
B A S I C

n/2+1

1

Synchrony
of

Index
Service-Type

1

n

C A U S A L

A G R E E D

S A F EFigure 3: Service Hierarchy of the Communication DomainAtomicThe atomic multicast is the basic service. It guarantees delivery of the message at all the activedestined sites. This means that the sites that are active at a time-range around the message-postingtime will receive the message 1.Every processor that receives an atomic message delivers it immediately to the upper level.Thus, the index of synchrony of the atomic service is 1 (including the sending processor).CausalThe causal multicast atom disseminates messages among all the destined processors such that causalorder of delivery is preserved. Motivated by Lamport's de�nition of order of events in a distributedsystem ([14]), The causal order of message delivery is de�ned as follows:If m, m0 are broadcast messages sent by p and q respectively, thenm! m0if deliveryq(m)! sendq(m0)Note that deliveryq(m) and sendq(m0) are events occurring at q sequentially, and therefore theorder between them is well de�ned. The causal delivery order relation for messages is the transitiveclosure of the above relation. If m ! m0 we say that m0 follows m, or alternatively that m isprior to m0. We say that m;m0 are concurrent if m 6! m0; m0 6! m. The causal multicast atomguarantees that if m! m0 as de�ned above, then for each processor p that receives both of them,deliveryp(m)! deliveryp(m0)1The range of time is system con�gurable. 6

www.manaraa.com

The index of synchrony here is 1 as well 2.AgreedThe agreed multicast delivers messages in the same order at all their overlapping sites. This orderis consistent with the causal order. The di�erence between the causal-multicast and the agreed-multicast is that the agreed-multicast orders all the messages. This includes messages that aresent concurrently, i.e. there is no causal relation between them. Thus, while the causal-order is apartial order, the agreed-multicast needs to concur on a single total order of the messages. Notethat a majority decision does not achieve the agreed order, since the environment is asynchronousand exhibits crashes. The agreed multicast is implemented via the ToTo algorithm ([2]). The indexof synchrony in ToTo is n2 + 1.SafeSometimes the user is concerned that a speci�ed message is received by all the destined processors.The safe multicast provides this information, and delivers the message to the upper level only whenall the processors in the current con�guration set have acknowledged reception of the message. Thesafe service does not block despite processor crashes. The index of synchrony here is n.MembershipTransis is designed to operate in a dynamic environment where processors can come up and maycrash, may partition and re-merge. The Transis system preserves a locality principle, guaranteeingits services for the currently live processors. The set of currently live processors is automaticallymaintained via the membership algorithm (described below in the membership section). Changesin the membership are delivered to the upper level as special con�guration-change events. Themembership algorithm determines the exact range of locality.The membership algorithm has the following properties:� Handles partitions and merges correctly.� Allows regular
ow of messages of all the supported types while membership changes arehandled.� Guarantees that members of the same con�gurations receive the same set of messages betweenevery pair of membership changes.3.3 LansisThis section de�nes the architecture and protocols of Lansis in a broadcast domain. Intuitively, wethink of a broadcast domain (BD) as a logical broadcast LAN, which provides reliable and diversebroadcast operations. Every message posted to Lansis by one of the processors is seen by all theprocessors. All the internal ACKs and NACKs employed by Lansis are seen by all of them too.2In practical implementation, we recommend that the sending processor wait for acknowledgement from at leastanother processor before delivery, in order to con�rm that the message is successfully posted on the network. There-fore, in practice, the index of synchrony is 2. 7

www.manaraa.com

However, unlike broadcast LANs, messages in the BD do not necessarily arrive at the processors inthe same order. The order of arrival depends on the type of service used, as de�ned in the previoussection. The BD is a logical structure, that may be implemented over general topologies.Lansis is an environment for disseminating broadcast messages. It is best suited for LANs, asexplained below in Lansis on LAN. However, Lansis can encompass diverse topologies. The logicalrole of processors is the same in WANs, though the cost and performance are likely to su�er.Lansis on LANIn order to understand the need for Lansis over LAN let us examine the following example of areplicated database: there are n identical replicas of data �les, d1:::dn. The update operations areimmediately propagated to all the replicas, and the query operations are serviced locally by eachreplica, giving the most up-to-date values. In most system implementations (e.g. [3]), each updateoperation involves contacting with each replica via point-to-point communication and transmittingthe update message to it (in addition to ordering-messages sent by the coordinator in order to seta total order of the update messages). If all the replicas reside on a physical broadcast LAN, thismethod incurs an enormous overate of messages: the same message is posted n� 1 times over thenetwork, where theoretically it can be seen by all the replicas, but all but one ignore it because itis not destined for them. Also, n� 1 ACKs need to be collected by the sender.The reason that the network broadcast is not used as is for this service is that it is not completelyreliable, and messages get lost. We have identi�ed three causes of message losses:1. Hardware faults incurred by the network.2. Failure to intercept messages from the network at high transfer rates due to interrupt misses.3. Software-bu�ers over
ow resulting from the protocol behavior.While the �rst cause is almost marginal and is expected to become extinct when technologyimproves, the last two reasons will remain and even become more acute when newer, faster networks(such as FDDI) are used. Therefore, it is up to the software protocols to handle message losses andcontrol the
ow of message dissemination.The Lansis ProtocolThe Lansis protocol is based on the principle that messages can be heard by all the processors.If a message is lost by some of the processors, there are many other processors in the networkthat have heard it and can retransmit it. Lansis uses a combined systems of piggybacked ACKsand NACKs in order to deliver messages to all the processors. This principle idea of Lansis ismotivated by the Trans algorithm [16] and the Psync protocol [19]. However, it varies considerablyin its implementation considerations, in the variety of services it provides, and in the membershipcontrol.Every processor transmits messages with increasing serial numbers, serving as message-ids. Wemark the messages transmitted by PA: A1 ; A2 ; A3 ; � � �. An ACK consists of the lastserial number of the messages delivered from a processor. ACKs are piggybacked onto broadcastmessages. A fundamental principle of the protocol is that each ACK need only be sent once. The8

www.manaraa.com

messages that follow from other processors form a \chain" of ACKs, which implicitly acknowledgeformer messages in the chain, as is the sequence:A1 ; A2 ; a2B1 ; B2 ; B3 ; b3C1 ; :::Processors on the LAN might experience message losses. They can recognize it by analyzing thereceived message chains. For example, in the following chain, a receiving processor can recognizethat it lost message B3: A1 ; A2 ; a2B1 ; B2 ; b3C1 ; :::The receiving processor here emits a negative-ACK on message B3, requesting for its retrans-mission. The delivered messages are held for backup by all the receiving processors. In this way,retransmission requests can be honored by any one of the participants. Thus, once a message isposted on the network, the role of carrying it to its destinations becomes the network's respon-sibility. Obviously, these messages are not kept by the processors forever. The `ImplementationConsiderations' section below explains how to keep the number of messages for retransmissionconstant.If the LAN runs without losses then it determines a single total order of the messages. Sincethere are message losses, and processors receive retransmitted messages, the original total order islost. We cannot expect two di�erent processors to observe the same message order. Thus, it is thepiggybacked information that determines the partial order of message passing.In Lansis, a new message contains ACKs for all the causally deliverable (non-acked) messages.This is an important di�erence between Trans and Lansis, where the ACKS in Lansis acknowledgethe deliverability of messages rather than their reception. Therefore, they re
ect the user-orientedcause and e�ect relation directly. In Trans, on the other hand, the partial order does not correspondto the user order of events and is obtained by applying the OPD predicate on the acknowledgements[16].It is easy to see that this di�erence does not introduce deadlocks (a message will not be delayedforever) nor does it render its correctness (atomicity and causality are preserved). From the practicalpoint of view we prefer to delay the ACKs when delivery is delayed, allowing us to control theprogress of the system. Furthermore, the delivery criteria in Lansis is signi�cantly simpli�ed bythis modi�cation.We think of the causal order as a directed acyclic graph (DAG): the nodes are the messages,the arcs connect two messages that are directly dependent in the causal order3. The causal graphcontains all the messages sent in the system. The processors see the same DAG, although as theyprogress, it may be \revealed" to them gradually in a di�erent order.Implementation of ServicesAll the Transis services are provided by Lansis. The services are provided by delivering messagesthat reside in the DAG. They di�er by the criteria that determine when to deliver messages fromthe DAG to the upper level. These criteria operate on the DAG structure and they do not involveexternal considerations such as time, delay etc.3An arc from A to B means that B acks A. Therefore A \generated" B.9

www.manaraa.com

The delivery criteria are as follows:1. Atomic: Immediate delivery.2. Causal: When all direct dependents in the DAG have been delivered.3. Agreed: We have developed a novel delivery criterion called ToTo that achieves best casedelay of n2 + 1 messages [2]. The ToTo criterion is strictly better than the `all-ack' criterioni.e. at extreme cases, it always delivers messages that have n ACKs, but typically it requiresless than n ACKs. ToTo is based on a dynamic membership, therefore it admits messages ina bounded delay determined by the underlying membership algorithm.4. Safe: When the paths from the message to the DAG's leaves contain a message from eachprocessor. The safe criterion changes automatically when the membership changes.The membership algorithm in Transis is described in a separate section below.Implementation ConsiderationsSince Transis is a practical system, it also concerns itself with the implementation requirementsand feasibility of the protocols. The transport protocol needs to keep the retransmission bu�ers�nite by discarding messages that were seen by all the processors. Furthermore, it needs to regulatethe
ow of messages and adapt it to the speed of the slowest processor. Waiting for NACKs is notgood enough. We observed by experimenting a naive implementation that recovery from omissionis costly and the system may fall into a cascade of omissions due to this belated response.Lansis employs a novel method for controlling the
ow of messages. This method attempts toavoid `bu�er-spill' as much as possible in order to prevent message losses, and further slows downwhen losses occur. De�ne a network sliding window as consisting of all the received messages thatare not acked by all yet. Each processor computes this window from its local DAG. Note that thiswindow contains messages from all the processors, unlike synchronous protocols like TCP/IP whichpreserve only sent-out messages. The sliding window determines an adaptive delay for transmissionby the window size, ranging from the minimal delay at small sizes and slowing up to in�nite delay(blocked from sending new messages) when the window exceeds a maximal size. The system doesnot block inde�nitely though. If the window is stuck for a certain period of time, the membershipalgorithm interferes and removes faulty processors form the con�guration. This releases the sliding-window block and the
ow of messages resumes.Performance of LansisThis section gives preliminary performance results of Lansis over a LAN. Lansis can operate cor-rectly over a general WAN using any routing algorithm. However, the performance will be di�erent;Our main interest is in the operation of Lansis over LANs.Lansis is a small package implemented on top of of UDP broadcast sockets. Should informa-tion be disseminated to more than two parties, Lansis already performs better than TCP/IP. Forexample, it achieves a throughput of 160 1K-messages per second in an Ethernet network of tenSun-4 workstations. This throughput is achieved in the most requiring conditions, when all the10

www.manaraa.com

participants emit messages concurrently and receive all the messages. In comparison, the trans-mission rate via TCP/IP in one direction between two parties in this network is about 350K/sec.Moreover, the Lansis protocol exhibits only marginal degradation in performance as more machinesare added to the broadcast domain.Lansis is a useful tool when used carefully. It is important to remember that it bears a cost:� Extraneous communication when messages are carried over to non-interested destinations.Also, completely noninterested processors on the LANs are interrupted by the broadcasttra�c.� Increased processing time of the transport layer, concerned with maintenance of the mutualbackup data structures and the protocol
ow control.� Space overhead used for the messages backup.4 XportThe communication domain (CD) comprises of a hierarchy of broadcast domains and providesthe multicast message passing services throughout it. This section describes the mechanism andprotocols by which Transis extends the scope of its services outside the broadcast domains. Themechanism is called the Xport mechanism.In general, the Lansis protocol might be too demanding on the environment, requiring eachprocessor to observe all the messages and maintain mutual backup. This may be unsuitable forvery large systems. The Transis protocol de�nes the same set of multicast services over a broaderrange of systems.Using a hierarchy of BDs instead of one bigger BD may be advantageous in the following ways:� The �rst advantage of the Transis is scalability: in a hierarchy of BDs, the messages overateand space overhead is kept within the smaller sets of BDs and therefore can be kept reasonable.� Secondly, the services are tailored to the system structure. For example, it might be bestto maintain each BD within a physical LAN where it bene�ts the most from the underlyingnetwork. The external communication outside the LAN employs the Xport mechanism.� The Transis protocol enables partitioning the set of communicating processors accordingto other considerations. For example, our experience shows that it is di�cult to balancethe Lansis protocol when a LAN contains processors of di�erent speeds. Instead, the slowcomputers may be coupled into a BD, and the fast computers constitute a separate BD. Thisreduces the task of controlling
ow in the system to the link between the two domains, whichis easier to handle.� Lastly, the application structure may suggest partitioning into communication clusters whichare best served by di�erent BDs. The application at large should not su�er from the overheadsexhibited by in a single BD, and is served best by a hierarchical communication domain.11

www.manaraa.com

The Communication DomainFigure 4 presents an architecture of a CD comprised of three BDs. A multicast message initiatedin a BD may be exported to one or more BDs at which it will be imported. All export/importactivities are handled by a designated member of the BD called the xport node. The xport nodesof di�erent BDs are connected by pairs of uni-directional point to point links, called xlinks.
xport

xport

xport

xlink(3,1)

xlink(1,3)

xlink(3,2)

xlink(2,3)

xlink(2,1)

xlink(1,2)

BD2

BD3

BD1Figure 4: The Communication Domain - a hierarchy of broadcast domains connected by the Xportmechanism.The CD is mappable to general communication structures in a way which e�ciently utilizeshardware characteristics and application structure. Though supplying all of the multicast serviceswith the same semantics as in a broadcast domain, the CD di�ers in performance and low levelbehavior. Within a BD each processor obtains all the acknowledgment information that passes inthe system, while outside, this information is inaccessible. The performance of message dissemina-tion within a single BD might be di�erent than in a broader CD. The Transis protocol is also moresusceptible to faults than Lansis since it depends on gateway connections. In addition, processorsonly backup other processors within their BD.The problem of making the Xport mechanism resilient to crash and disconnection faults issolved by replicating xport nodes and xlinks. A service can be replicated using an agreement atom.In Xport, the agreement atom is implemented using the agreed multicast service in the set of xportnodes. Thus, one additional multicast is needed per export or import of an event. In the followingsections we will assume reliable xlinks and xport nodes.12

www.manaraa.com

Atomic and Causal Multicast in the CDThis section describes the inter-BD protocol that extends the atomic and causal multicast servicesto the communication domain. The inter-BD causal multicast protocol is performed only by thexport nodes, all other nodes perform only the regular intra-BD protocol and are totally obliviousto the fact that messages cross BD boundaries.The inter-BD causal multicast protocol entails two types of activities:� Export: The xport node exports the message to all relevant BDs.� Import: Messages received from remote BDs are disseminated locally while preserving causalorder requirements.Each xport node maintains a vector of counters v with one entry per xlink in the system4,v = (v1; :::; vn) where n is the number of xlinks in the CD. When an xport node engages to exporta message on some xlinks, it increments these links' �elds in the vector. It sends the full vectorwith the counters of all the xlinks in the system. Similarly, when an xport node imports a message,it delays handling it until all prior messages on connected links are received. This is done bycomparing the vector components that correspond to all the incoming links. It updates the localvector by taking the pairwise maximum of all the xlinks. Upon importing a message, the xporttransmits it in its local BD. This method relies on the continuity of xlink counters, and in case ofpartitions, the upper level needs to update the counters.Note that the vector contains an entry per xlink and not per BD (unlike ISIS vector timestamps). The reason for this is that messages may be destined to any number of BDs. In this waynon-interested BDs are not concerned with messages not destined to them.The import and export algorithms are sketched below:� Import: Upon receiving a message m, stamped with a vector time stamp mv, through xlinkinl, wait until for every incoming xlink l:(mv[l] = v[l] + 1 l = inlmv[l] <= v[l] l 6= inlWhen the condition holds, update v to the pairwise maximum of (v, mv), and multicast mwithin the BD.� Export: Upon delivery of a message m initiated in the local BD such that destinations(m)contain external nodes:1. Strip m of inner BD piggybacked information (ACKs, NACKs);2. Let outlinks contains all the outgoing links to the external destinations of m.For every xlink l 2 outlinks, increment v[l].3. Stamp m with v and send it on all outlinks.It can easily be veri�ed that this protocol extends the causal order across BDs.4n can be reduced by applying considerations similar to those described in [8]13

www.manaraa.com

Agreed and Safe Multicast in the CDThe intra-BD agreed multicast extends the agreed multicast in the CD. If messagesm1,m2 initiatedat BD1, BD2 respectively, are multicast to processors in BD1 and BD2, then all destinations of(m1; m2) in both BDs will deliver m1 and m2 in the same order. It should be noted that onlymessages destined to more than one BD need to participate in the inter-BD protocol, all othermessages are internal to the BD from which they were initiated. The correctness of the agreedmulticast service is preserved if these messages participate only in the intra-BD protocol.The agreed multicast service in the CD is implemented on top of the causal multicast protocol.It is implemented by a cascade of two protocols (see Figure 5):� An intra-BD agreed multicast protocol. Performed only in the BD from which the messagehad been initiated. Once local deliverability is reached the message is further delayed untilthe inter-BD protocol reaches global deliverability.5 At remote BDs, an imported agreedmulticast message is delayed until global deliverability is reached.� An inter-BD total ordering protocol. Performed only by the xport nodes. The input to theprotocol is a stream of partially ordered messages, among which the locally initiated messagesare totally ordered. The xport nodes reach an agreement on the order of all relevant messagesand broadcast it within their BDs. This agreement can be reached by any algorithm for totalordering of messages.
And

regular node

xport node

Message
Receive Imported

Protocol

Intra-BD

Perform

Local Can-Deliver

Global Can-DeliverExport Needed

Local Can-Deliver

Export Not Needed

Pend Deliver

(a)

Xport Reports:Receive Local
Message

Message
Receive Local

Protocol

Intra-BD

Perform

Inter-BD

Protocol

Perform

(b)

Export Not Needed

Local Can-Deliver

Export Needed

Local Can-Deliver

Global Can-Deliver

.

Report
Global

Deliverability

Deliver

Receive Imported
MessageFigure 5: Agreed multicast in the CD: a per message state diagram.The safe multicast is easily reducible (in a similar way to the agreed multicast) to a cascade of5As noted above, for messages with a destination set contained in the local BD no further delay is needed.14

www.manaraa.com

two protocols: an intra-BD all-ack protocol and an inter-BD all-ack protocol in which the relevantxport nodes exchange local deliverability information.CostThe concept of a single port through which all messages are imported and exported is natural inmany physical topologies. It is often the case that a LAN is connected to other LANs or WANs viaa single bridging node. Thus, the Xport mechanism does not introduce any additional communi-cation bottlenecks. Since BDs are typically large and connected by relatively slow links, we expectthe communication bandwidth between BDs to be signi�cantly smaller than the communicationbandwidth inside a BD. Thus, the relatively simple protocols employed by the Xport mechanismare not expected to be a serious processing burden on the xport nodes.

15

www.manaraa.com

5 MembershipEvery processor holds a private view of the current con�guration that contains all the processors ithas established connections with. We call this view CCS, the Current Con�guration Set. Note thatthis is not a user-de�ned processor-set, but represents the up-to-date knowledge of active processorsin the system. All the processors in the current con�guration set must agree on its membership.When a processor comes up, it forms a singleton CCS. This initial set is trivially in agreementby all its members. The CCS undergoes changes during operation: processors dynamically goup and down, and the CCS re
ects these changes through a series of con�guration changes. Themembership problem is to maintain the CCS in agreement by all its members throughout thesechanges.This problem is provably impossible to solve in asynchronous environments with faults([12, 11]).Our membership algorithm circumvents these results by allowing the extraction of live (but notactive) processors unjustfully. Consequently, the membership algorithm never allows blocking, andoperates within the regular
ow of messages. The sections bellow give the essentials of the algorithmand an intuitive claim of its correctness. A full description of the membership algorithm and itsproof is provided in [1].5.1 The Faults Handling AlgorithmThis section focuses on a membership algorithm for handling departure of processors from the setof active ones.Throughout this section, we assume the existence of a starting `current' membership, Members,which is the agreed set of connected members. Members is the lower level's representation of themembership set. Initially, CCS in the upper level contains the same set as Members. During thefaults protocol, the Members set undergoes changes which might render it temporarily di�erentfrom CCS. Eventually, these changes are propagated to the upper level and the CCS becomesup-to-date with Members.The fault handling algorithm operates within the regular
ow of messages. When processors inthe current set fail, the DAG gets �lled with messages that require ACKs from the failed processors(such as `safe' and `agreed' messages). As a result, the system would block. Therefore the faultsneed to be detected and considered. The object of the algorithm is to achieve consensus among allthe live processors about the failed processors.Each processor may �nd out separately about failed processors. The speci�c method for de-tecting faults is implementation dependent and irrelevant to the faults algorithm. For example, inthe Transis environment, each processor expects to hear from other processors in the CCS withinsome regular interval. Failing this, it attempts to contact the suspected failed processor through aspecial safe channel. If this fails too, it decides that this processor is faulty, and emits an F messagedeclaring this processor faulty.A processor p receiving a set SP of F messages seeks for con�rmation from all the remainingprocessors in the membership. The SP set is ordered by the causal order, and by the lexicographicalorder among concurrent messages. The accepting set, Accept = Members � Faulties, must sendACKs for all of SP . This is the deliverability condition for the F messages in SP . When SPis deliverable, the faulty processors are removed from Members and the delivery criterion for theregular messages is changed. The block is thus removed, and the next messages from the DAG are16

www.manaraa.com

delivered to the upper level. Eventually, all the F messages are delivered according to their orderin SP . Accordingly, the CCS goes through the con�guration changes one by one, that bring itup-to-date with Members.This algorithm assures that the live connected processors agree on every failed processor. More-over, all processors deliver the same last message from a failed processor, before installing the newcon�guration. Note that the SP set is dynamic, and may be di�erent at distinct processors. How-ever, the following two properties are preserved:� All the connected processors deliver the same set of messages before delivering each con�gu-ration change. In particular, all the con�guration changes are delivered in the same order.� All the `safe' messages are delivered with the same safe-set of the processors that acked them.The following section introduces the data structures of the algorithm and some notations. Theprotocol is given in pseudo code in an event-driven fashion, describing the handling of each incomingmessage.NotationIn addition to regular messages, there are F messages in the form F(p), where F(p) suggests thatan existing processor p is faulty.Each processor maintains a few data structures and a set of operators on them:1. The direct acyclic graph (DAG p) of the received messages that are pending to be delivered.It is a common variable to all operations, and we omit it as an explicit parameter further on.2. Members p - The current set of connected processors.3. SP p = fF (q1); : : : ; F (qk)g - The ordered set of non-delivered special (faulty) messages.4. Accept p = Members p � fq j F (q) 2 SP pg.Below, we neglect to write the `p' superscript when it is obvious from the context.The AlgorithmThe faults protocol speci�es the delivery criteria for F messages, and the e�ect taken by deliveringthem. The protocol operates on a full DAG without losses. The acking mechanism and the recoveryof missing messages are part of the Transis package.1. When the event of communication-break with processor q occurs, send F message F(q).2. When receiving a message from a failed sender (i.e. F(sender) 2 SP) discard it, unless it isa message that the Transis layer asked for recovery.3. When receiving a regular message insert it to the DAG.17

www.manaraa.com

4. When receiving F message F(q) set:SP = SP [fF (q)gAccept = Accept� fqgStop acking messages from q.5. When receiving ACK for any message in SP , check the following delivery criterion for SP :All the processors in Accept acked all the messages in SP . If the criterion is met, change:Members = AcceptSP = ;:After each event of the algorithm, it checks if the next message in the DAG is deliverable. If so,the message is delivered to the upper level and removed from the DAG. Note: this includes bothregular messages and F messages. The upper level notes the con�guration change only when theF messages are delivered to it according to their order in the DAG. F messages are taken last intheir concurrency set.5.2 General Description of the Join AlgorithmIn this section we give a non-formal description of the join algorithm, in order to provide intuitionon it.At a normal state, all the connected processors agree on the membership in their currentcon�guration. (And a recovered or a newly started processor is a single member set). The joinalgorithm is trigerred when a processor detects a \foreign" message in the broadcast domain. Thecurrent set attempts to merge with the foreign set or sets. Since it operates in a broadcast domain,we expect this to typically happen at the other set(s) and the algorithm works symmetrically,i.e. there is no joining-side and accepting-side. Note that actual simultaneity is not required forcorrectness. The closer the sets commence, the sooner they will complete the join protocol. Thepurpose of the join algorithm is to reach an agreed decision on a joined-membership. There arethree logical phases (see Figure 6):1. Each connected set \publishes" its membership through a special attempt-join (AJ) message.2. AJ messages are observed by foreign processors. Each processor independently suggests amerged con�guration in a JOIN message. JOIN messages are observed and acked by foreignprocessors. A JOIN message that is con�rmed by all of its members is accepted as the newcon�guration.3. The common DAG of messages of the new con�guration is rooted at the accepted JOINmessage and contains messages that follow it.A JOIN message that is considered for delivery divides all the messages to those that precedeit and those that follow it. Messages that are prior to it are delivered within their original con-�gurations. If the JOIN message is delivered, messages that follow it are delivered in the joined18

www.manaraa.com

time

D A G

D A G

D A G

D A G

J o i n e d

A ’ s

B ’ s

C ’ s

AJ

AJ

AJ

JOIN

flow of
regular
messages

Figure 6: Join Procedure - 3 Logical Phasesset. Thus, the handling of special messages before and after a JOIN message is essentially thesame as the faults algorithm. It can be shown that all connected processors deliver the same JOINmessage. Naturally, if a partition occurs during the join procedure, two detached processors mightnot maintain this.A few details are worth noting: Each set must agree on the representing state of the set, for theAJ message. The last message that caused a con�guration change is taken as the representing stateof the set. The state representation includes the membership and a complete vector time-stamp,that holds the counter of the last delivered message from each member processor. Any membercan transmit this agreed state when trying to join other sets, provided that there are no pendingmessages for con�guration changes.After sending a representative AJ message of the set, each processor in each set delays beforeattempting to join other sets (during this time, regular
ow of messages within the set continues).The purpose of delaying is to allow as many other sets as possible to reach an agreement andtransmit their AJ message. When the delay completes, each processor independently transmits asuggested JOIN message containing all the AJ/JOIN messages it received. If a JOIN message sentby another processor already contains this suggestion, the processor avoids re-suggesting it andsimply acks it. 19

www.manaraa.com

The join algorithm must guarantee consistency of the join procedure, such that all the connectedmembers agree on the accepted JOIN message. Therefore, every processor commits to one JOINsuggestion by either sending it or acking it. However, if any of the processors required to con�rmthis JOIN message sends a di�erent suggestion before acking it, a new JOIN message combiningboth suggestions is sent. Note that di�erent suggestions from foreign processors must be ignoredafter committing to one JOIN message. However, if a required member of the committed JOINmessage sends a di�erent suggestion, it is safe to move to a new JOIN message.Combining di�erent suggestions such as JOIN, AJ and F messages is done by taking all thelive processors in all the messages. There may be a delicate rare situation when a processor movesfrom one con�guration to another without the former set's knowledge (yet). The merger recognizesthis fact through the time-stamp of this processor in two AJs in the JOIN message. It marks theprocessor faulty in its former set, i.e the one with the smaller counter. When there are multiple,concurrent identical JOIN messages they are considered as one and do not require merging.Faults occurring during the join procedure are handled in the usual way, where F messagesfollowing the JOIN message must be acked by the joined membership set. Faults that are reportedconcurrently with a JOIN message are a special case of \di�erent suggestions" sent by requiredmembers. In the case of concurrent JOIN and F messages, a new JOIN message merges them. Thisallows a JOIN message to be delivered even if members of its suggested membership fail during thejoin procedure.A JOIN message can be delivered when its proposed membership set acks it. There may befaulty processors in this set, in which case the remaining processors must ack both the JOINmessage and all the F messages.

20

www.manaraa.com

6 ConclusionsMost transport-layer packages today provide point to point communication, or non-reliable mul-ticast. We have shown how to generalize methods employed by these layers to support multicast,and how to incorporate them gracefully into existing systems. Our preliminary implementationover a heterogeneous network of Sun-4 and Sun-3 machines shows promising results. Over morethan three machines, performance is already better than standard point to point protocols.Fischer, Lynch and Paterson ([12], and later Dolev, Dwork and Stockmeyer, [11]) have shownthat without some sort of synchronization no agreement is possible. Our membership algorithmcircumvents these results by introducing a dynamic local group upon which agreement is based.It is true that in some extreme cases, processors may wrongly decide that another processor hasfailed, but when this is found out, the system recovers. By maintaining membership at the lowestlevel, we simplify the implementation of all the other services. For example, in [2] we show how toconstruct the agreed multicast on top of the dynamic membership.The membership algorithm operates symmetrically and spontaneously. Its novel aspect is theability to join partitions. To the best of our knowledge all of the existing membership algorithms(e.g. [17, 18, 10, 8]) handle the joining of single processors only. This feature is crucial sincepartitions do occur. For example, when the network includes bridging elements partitions arelikely to occur.

21

www.manaraa.com

References[1] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Membership algorithms in broadcast domains.Technical Report CS92-10, dept. of comp. sci.., the Hebrew University of Jerusalem, 1992.[2] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Total ordering of messages in broadcast domains.Technical Report CS92-9, dept. of comp. sci.., the Hebrew University of Jerusalem, 1992.[3] A. Bhide and S. P. Morgan. A highly available network �le server. RC 16161, IBM Research,May 1990.[4] K. Birman, R. Cooper, and B. Gleeson. Programming with process groups: Group and mul-ticast semantics. TR 91-1185, dept. of Computer Science, Cornell Uni., Jan 1991.[5] K. Birman, R. Cooper, T. A. Joseph, K. Marzullo, M. Makpangou, K. Kane, F. Schmuck, andM. Wood. The ISIS System Manual. Dept of Computer Science, Cornell University, Sep 90.[6] K. Birman and T. Joseph. Realiable communication in the presence of failures. ACM Trans.Comput. Syst., 5(1):47{76, February 1987.[7] K. Birman and T. Joseph. Exploiting virtual synchrony in distributed systems. In Ann. Symp.Operating Systems Principles, number 11, pages 123{138. ACM, Nov 87.[8] K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic group multicast. TR91-1192, dept. of comp. sci., Conrell University, 91. revised version of `fast causal multicast'.[9] J. M. Chang and N. Maxemchuck. Realiable broadcast protocols. ACM Trans. Comput. Syst.,2(3):251{273, August 1984.[10] F. Cristian. Reaching agreement on processor group membership in synchronous distributedsystems. Research Report RJ 5964, IBM Almaden Research Center, Mar. 1988.[11] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchrony needed for distributedconsensus. J. ACM, 34(1):77{97, Jan. 1987.[12] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus withone faulty processor. J. ACM, 32(2):374{382, 1985.[13] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Lazy replication: Exploiting the semanticsof distributed services. In Ann. Symp. Principles of Distributed Computing, number 9, pages43{58, August 90.[14] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Comm. ACM,21(7):558{565, July 78.[15] B. Liskov and R. Ladin. Highly-available distributed services and fault-tolerant distributedgarbage collection. In Ann. Symp. Principles of Distributed Computing, number 5, August 86.[16] P. M. Melliar-Smith, L. E. Moser, and V. Agrawala. Broadcast protocols for distributedsystems. IEEE Trans. Parallel & Distributed Syst., (1), Jan 1990.22

www.manaraa.com

[17] P. M. Melliar-Smith, L. E. Moser, and V. Agrawala. Membership algorithms for asynchronousdistributed systems. In Intl. Conf. Distributed Computing Systems, May 91.[18] S. Mishra, L. L. Peterson, and R. D. Schlichting. A membership protocol based on partialorder. In proc. of the intl. working conf. on Dependable Computing for Critical Applications,Feb 1991.[19] L. L. Peterson, N. C. Buchholz, and R. D. Schlichting. Preserving and using context infor-mation in interprocess communication. ACM Trans. Comput. Syst., 7(3):217{246, August89.

23

